LING 1340/2340 (MULTIMODAL) DATA

AGENDA

〉Progress report: How goes?
, Speech data recap and issues

- More tools: Parselmouth, SpeechRecognition
, Multimodal data

RECAP: SPEECH DATA

, Sourcing/sifting/cleaning/organizing data in the wild
, Common task: convert to text

- Default assumptions (noisy-channel model, HMM)
- Issues with ASR (variation, decoding)

ISSUE: LEVELS OF COMPLEXITY

- Forced alignment - no word-level inference
- Task-specific data - few reasonable competitors
, Large Vocabulary Continuous Speech Recognition (LVCSR)
〉 a.k.a. speech analytics

APPROACHES TO LVCSR

, Topic analysis

- Speaker-dependent training
, n-gram modeling (for phones and words)
, Deep learning (Deep/Recurrent neural networks)
, Adaptive training

DEEP NEURAL NETWORKS

, Successive layers of a neural network; multiple levels of representation (e.g. of linguistic structure)

- See Anish's slides from last semester
- Recurrent neural networks include temporal states
b Both require a LOT of training data

ISSUE: HOW MUCH DATA?

- In principle: enough to be able to distinguish the signal from the noise
- Enough to inform enough feature layers
- Pre-training can compensate for low training resources (Thomas et al. 2013; Vu et al. 2011)

MORE TOOLS

, Praat script repositories

- Parselmouth: Access Praat code through Python
, Also not very well documented!
D SpeechRecognition package: Use ASR APIs through Python

D aeneas: Forced alignment through Python

ELAN: ANNOTATION FOR VIDEO + AUDIO

(link)
(Projects using ELAN: https://tla.mpi.nl/past-projects/
, Example: BU ASL corpus

