Lecture 8: Annotation, data-mining web & social media

LING 1340/2340: Data Science for Linguists Na-Rae Han

Data-mining web & social media

- Twitter sample corpus
 - Static corpus: download from the <u>NLTK data page</u>
- How does one data-mine Twitter?
 - Answer: through API (Application Program Interface)
 - <u>To-do #8</u>
 - Getting acquainted with JSON format
 - <u>Data Analysis using Twitter API and Python</u>, The Code Way tutorial
 - And a couple more on the Learning Resource page
- Libraries used: tweepy, json
- How did you like Twitter Mining?

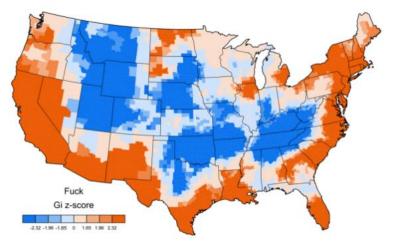
Processing a static Twitter corpus

"Twitter Samples" corpus can be downloaded from http://www.nltk.org/nltk_data/

```
In [3]: # One json object per line
    jfile = 'D:/Corpora/twitter_samples/positive_tweets.json'
    jlines = open(jfile).readlines()
    jlines[0]
```

Out[3]: '{"contributors": null, "coordinates": null, "text": "#FollowFriday @France_Int e @PKuchly57 @Milipol_Paris for being top engaged members in my community this week :)", "user": {"time_zone": "Paris", "profile_background_image_url": "htt

```
In [5]: # using json library to read line.
import json
json.loads(jlines[0])
```

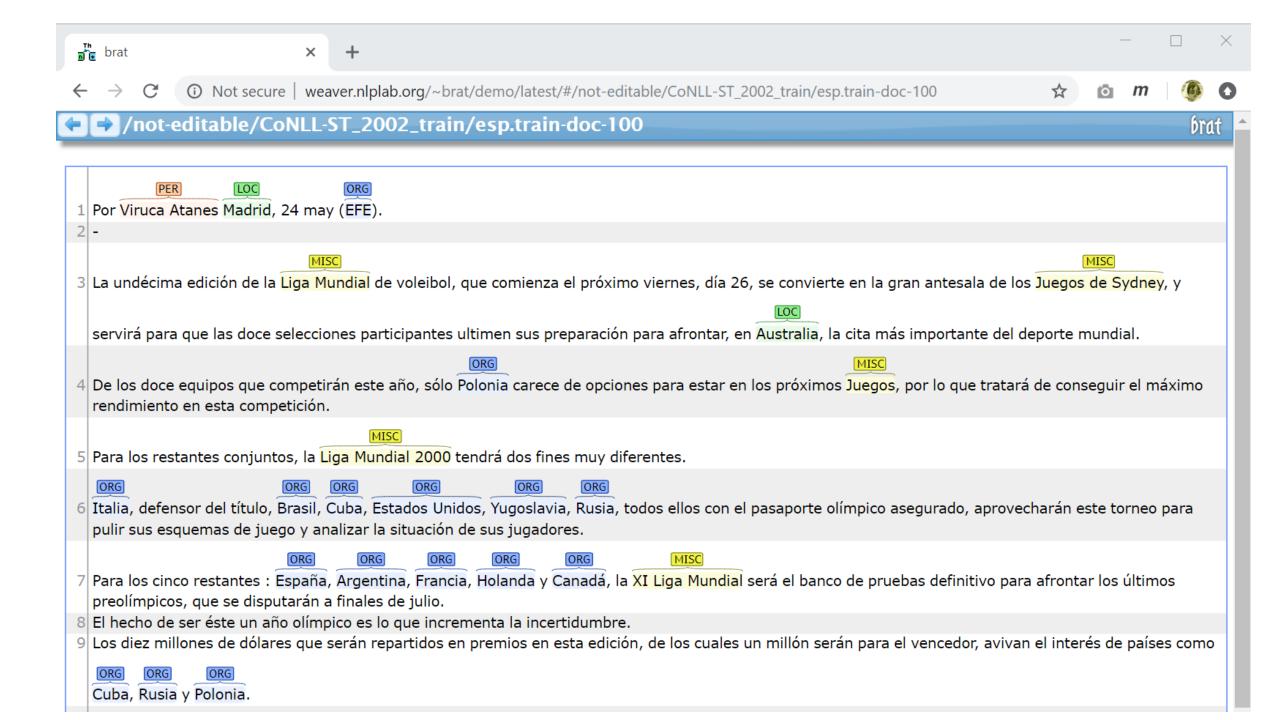

```
Out[5]: {'contributors': None,
    'coordinates': None,
    'created_at': 'Fri Jul 24 08:23:36 +0000 2015',
    'entities': {'hashtags': [{'indices': [0, 13], 'text': 'FollowFriday'}],
    'symbols': [],
    'urls': [],
    'urls': [],
    'user_mentions': [{'id': 3222273608,
        'id_str': '3222273608',
        'indices': [14, 26],
        'name': 'Erance International'.
```

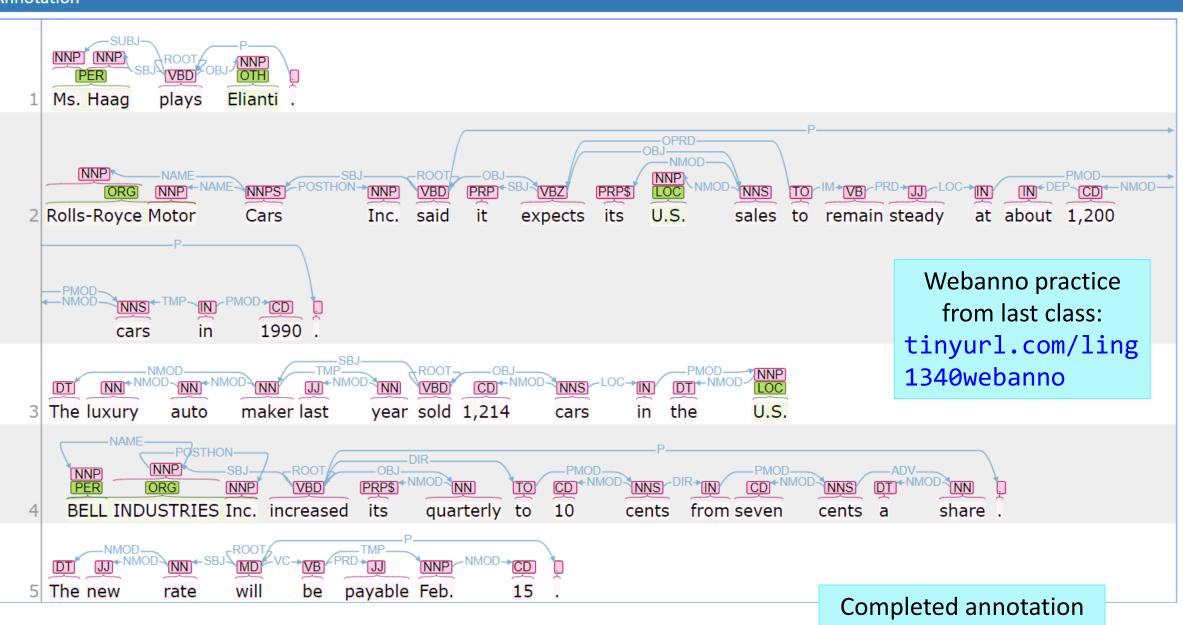

Web mining

- Involves "web crawling" "web spyder", ...
- scrapy is the most popular library.
 - https://scrapy.org/
 - \leftarrow You will have to install it first.
- Scrapy tutorial:
 - Official Scrapy:
 - https://doc.scrapy.org/en/latest/intro/tutorial.html
 - Digital Ocean:
 - https://www.digitalocean.com/community/tutorials/how-to-crawl-a-web-page-with-scrapy-and-python-3
- You have collected a set of web pages. Now what?
 - A web page typically has tons of non-text, extraneous data such as headers, scripts, etc.
 - You will need to parse each page to extract textual data.
 - Beautiful Soup (bs4) is capable of parsing XML and HTML files.

Mining social media for swear words

- https://stronglang.wordpress.com/2015/07/28/mapping-the-united-swears-ofamerica/
 - Jack Grieve mined Twitter and mapped prominent swear words by geographic regions within the US




Back to annotation

 "brat" annotation interface

Annotation

Dependency annotation: format

https://raw.githubusercontent.com/UniversalDependencies/UD_English-EWT/master/en_ewt-uddev.conllu

sent_id = weblog-blogspot.com_nominations_20041117172713_ENG_20041117_172713-0002
text = President Bush on Tuesday nominated two individuals to replace retiring jurists on federal courts in the Washington
area.

1	President		President		PROPN	NNP	Number=Sing		5	nsubj	5:nsubj	_			
2	Bush	Bush	PROPN	NNP	Number=	Sing	1	flat	1:flat	_					
3	on	on	ADP	IN	_	4	case	4:case	_						
4	Tuesday	Tuesday	PROPN	NNP	Number=	Sing	5	obl	5:obl	_					
5	nominat	ed	nominat	e	VERB	VBD	Mood=In	d Tense=l	Past Ver	bForm=Fi	n	0	root	0:root	_
6	two	two	NUM	CD	NumType	=Card	7	nummod	7:nummo	d	_				
7	individ	uals	individ	ual	NOUN	NNS	Number=	Plur	5	obj	5:obj	_			
8	to	to	PART	TO	_	9	mark	9:mark	_						
9	replace	replace	VERB	VB	VerbFor	m=Inf	5	advcl	5:advcl	_					
10	retirin	g	retire	VERB	VBG	VerbFor	m=Ger	11	amod	11:amod	_				
11	jurists	jurist	NOUN	NNS	Number=	Plur	9	obj	9:obj	_					
12	on	on	ADP	IN	_	14	case	14:case	_						
13	federal	federal	ADJ	33	Degree=	Pos	14	amod	14:amod	_					
14	courts	court	NOUN	NNS	Number=	Plur	11	nmod	11:nmod	_					
15	in	in	ADP	IN	_	18	case	18:case	_						
16	the	the	DET	DT	Definit	e=Def Pr	onType=A	rt	18	det	18:det	_			
17	Washing	ton	Washing	ton	PROPN	NNP	Number=	Sing	18	compound	d	18:compo	und	_	
18	area	area	NOUN	NN	Number=	Sing	14	nmod	14:nmod	SpaceAf	ter=No				
19			PUNCT		_	5	punct	5:punct	_						

An anatomy of annotation project

- Suppose you are tasked to start up an annotation project:
 - Error annotation of a set of essays written by ESL learners
 - Audio files of sociolinguistic interviews
 - A set of videos featuring ASL content
- What should you be figuring out?
 - 1. Annotation scheme
 - 2. Physical representation
 - 3. Annotation process
 - 4. Evaluation and quality control
 - 5. Usage

Adapted from p.9 of Ide & Pustejovsky eds. (2017), Handbook of Linguistic Annotation

Annotation scheme

- Error annotation of a set of essays written by ESL learners
- Audio files of sociolinguistic interviews
- A set of videos featuring ASL content
- 1. Is there an underlying theory? What is it?
- 2. What features should be targeted and how should they be organized?
- 3. What is the process of annotation scheme development?
- 4. Should the potential use of the annotations inform development of the annotation scheme?
- 5. Will development of the scheme inform the development of linguistic theories or knowledge?

Physical representation

- Error annotation of a set of essays written by ESL learners
- Audio files of sociolinguistic interviews
- A set of videos featuring ASL content
- 1. How is the annotation represented? What **format**? Standards?
- 2. What are the reasons for the particular representation chosen?
 - What are the advantages/disadvantages of the chosen representation that may have come to light through its use?
- 3. What **annotation software tools** are capable of handling them?

Annotation format

To XML or not to XML?	▼ <essay> ▼<tunit> Россия является частью Европы потому-что Россияни одеваются обычно по моде, так-же как друш страны Европы, и так-же многие считают что они более подобны белой Европе чем Азии.</tunit></essay>					
 Gina Peirce's 						
<u>Russian</u> <u>learner</u>	▼ <tunit> Политика в России отличается от Китая и например Индии. </tunit> ▼ <tunit></tunit>					
<u>corpus</u> :	У нас нет систем <err <mark="">cf="каст" pos="nn" gnd="fm" cs="g" num="pl" t="cs">касты</err>					
	<pre></pre>					

Annotation format

- Inline or stand-off?
 - Inline annotation has annotations occurring alongside the text.
 - Example: The Brown corpus, Gina Peirce's corpus
 - Pros: simple, self-contained. An XML parser is all you need.
 - Cons: May not be suitable for multi-layer annotations.
 - **Stand-off annotation** has an annotation existing in a separate layer, typically as a separate file. Annotation points to an *offset* or a *span*.

Stand-off annotation: an example

Original text: "Mia visited Seoul to look me up yesterday."

<maf xmlns:"http://www.iso.org/maf"> <seg type="token" xml:id="token1">Mia</seg> <seg type="token" xml:id="token2">visited</seg> <seg type="token" xml:id="token3">Seoul</seg> <seg type="token" xml:id="token4">to</seg> <seg type="token" xml:id="token5">look</seg> <seg type="token" xml:id="token6">me</seg> <seg type="token" xml:id="token6">me</seg> <seg type="token" xml:id="token6">up</seg> <seg type="token" xml:id="token6">up</seg> <seg type="token" xml:id="token6">yesterday </seg> <seg type="token" xml:id="token7">up</seg> <seg type="token" xml:id="token8">yesterday </seg>

</maf>

Word tokens: inline segmentation

<isoTimeML xmlns:"http://www.iso.org./isoTimeML"> <TIMEX3 xml:id="t0" type="DATE" value="2009-10-20" functionInDocument="CREATION TIME"/> <EVENT xml:id="e1" target="#token2" class="OCCURRENCE" tense="PAST"/> <EVENT xml:id="e2" target="#token5 #token7"class="OCCURRENCE" tense="NONE" vForm="INFINITIVE"/> <TIMEX3 xml:id="t1" type="DATE" value="2009-10-19"/> <TLINK eventID="#e1" relatedToTime="#t0" relType="BEFORE"/> <TLINK eventID="#e1" relatedToTime="#t1" relType="ON OR BEFORE"/> <TLINK eventID="#e2" relatedToTime="#t1" relType="IS INCLUDED"/> </isoTimeML> <tei-isoFSR xmlns:"http://www.iso.org./tei-isoFSR"> <fs xml:id="t0"><f name="Type" value="2009-10-20"/></fs> </tei-isoFSR>

Time Event Annotation: stand-off annotation

Annotation process

- Error annotation of a set of essays written by ESL learners
- Audio files of sociolinguistic interviews
- A set of videos featuring ASL content
- 1. Will the annotation be done *manually, automatically,* or via some combination of the two?

2. Manual annotation:

- How many annotators? Their background?
- What annotation environment/platform will be used?
- What are the exact steps? Multiple passes involving multiple annotators? Pipeline?
- How will inter-annotator agreement be computed?

3. Automatic annotation:

- What software will be used to generate the annotations?
- How well does this software generally perform? Will it be a good fit with your data?

Evaluation and quality control

- Error annotation of a set of essays written by ESL learners
- Audio files of sociolinguistic interviews
- A set of videos featuring ASL content
- 1. Systematic scaffolding to minimize human error?
- 2. By what method(s) will the quality of the annotations evaluated?
 - Inter-annotator agreement (IAA)
- 3. What is the threshold for the quality of annotations?

Inter-annotator agreement

- An important part of quality control
- Necessary to demonstrate the reliability of annotation.
- Common practices:
 - Create "gold" annotation (deemed "correct") to evaluate individual annotators' output against
 - Designate a portion of data to be annotated by multiple annotators, then measure interannotator agreement
 - Pre- and post-adjudication agreement: do disagreements persist after an adjudication process?

Inter-annotator agreement: factors

- Agreement rate depends on two main factors:
 - <u>Quality of annotators</u>: how well-trained the annotators are
 - <u>Complexity of task</u>: how difficult or abstract the annotation task at hand is, how easy it is to clearly delineate the category
 - ← IMPORTANT because human agreement (esp. post-adjudication) is considered a **CEILING** for performance of machine-learning!

How much will humans agree?

POS tagging

- Via <u>Universal Dependency POS tagset</u>?
- Using the <u>Penn Treebank tagset</u>?
- Syntactic tree bracketing for Penn Treebank
 - Reported to be about 88% (F-score)
- Scoring TOEFL essays, 0 to 5
 - Reported to be about 80% (Cohen's kappa)
 - ← Is there hope for automated essay grading?

Cohen's kappa

- Good or bad level of agreement?
 - Case A: Movie reviews are annotated as "rotten" or "fresh". Two annotators agree 70% of the time.
 - **Case B**: Student essays are rated from 0 to 5. Two annotators agree 70% of the time.
- Cohen's kappa (K) coefficient is one of the most widely used measures of interannotator agreement.
 - Accounts for "chance" agreement.

$$\kappa\equiv rac{p_o-p_e}{1-p_e}$$

 P_o : observed agreement P_e : probability of chance agreement P_e is 0.5 in Case A, 0.17 in Case B. Case A: K = (0.7 - 0.5) / (1 - 0.5) = **0.4** Case B: K = (0.7 - 0.17) / (1 - 0.17) = **0.64**

- Error annotation of a set of essays written by ESL learners
- Audio files of sociolinguistic interviews
- A set of videos featuring ASL content
- 1. By what means and under what conditions will the data be available to users?
- 2. What are the expected usages of the annotated data?
- 3. Will the data be used for machine learning, and if so what types of task?

Wrapping up

- New topic: machine learning
 - Start learning!
- 1st progress report due on Thursday