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Objectives

• Computer Anatomy
• Memory
• Processing

• Computational Efficiency
• Algorithmic complexity
• Big O notation

• Solutions
• Chunking data
• Choosing the right data type



How Do Computers Work?

• Main Components
• CPU

• Video Card

• RAM (Random Access Memory)

• Hard Drive

• Motherboard

• Power Supply



Random Access Memory (RAM)

• ”Random Access”
• Can be read or changed in any order

• Makes this type of storage insanely fast

• Used for our “working” data

• Other storage mediums
• HDD, SSD, Magnetic Tape, etc.

• Not as fast

• Used for large, permanent storage



Central Processing Unit (CPU)

• Circuit that executes instructions of programs
• Arithmetic

• Logic

• Controlling

• I/O

• Contain Cores
• Individual Processors within the CPU

• Each core can compute independently

• Allows the CPU to process multiple tasks in parallel



Computational Efficiency: Space vs. Time

Space Complexity
• How much memory are we using?

• Do not create duplicate data objects

• Avoid creating data objects that do 
not need to be stored in their entirety

• Garbage Collection
• Variable name acts as pointer
• Data that does not have a pointer will be 

removed from memory automatically
• If space is a concern, don’t rely on this

Time Complexity
• How much processing are we doing?

• Avoid repeating steps that require 
heavy processing

• Use efficient algorithms

• Use data types optimal for a specific 
task

The goal is to optimize both. 
They often exist as a trade-off 
relationship, but by managing 
our resources we can achieve 
balance.



Algorithmic Complexity and the Big O

• https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

• Can be used to describe the worst-case performance of an algorithm

• We have an unsorted list of n items. Imagine n to be any value.

1. Is the first element in the list an even number?
• Can be implemented in O(1), or constant time
• Does not change as the size of n increases

2. Does the list contain 42?
• Can be implemented in O(n), or linear time
• Directly proportional to the size of n

3. Does the list contain duplicate values?
• Can be implemented in O(n2), or quadratic time
• Directly proportional to the square of the size of n
• Can be optimized, but at the expense of space complexity

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/


Algorithmic Complexity and the Big O

4. Sort the list
• Can be implemented in       

O(n log n), or loglinear time

• See: 
https://brilliant.org/wiki/sorti
ng-algorithms/

http://bigocheatsheet.com/

https://brilliant.org/wiki/sorting-algorithms/
http://bigocheatsheet.com/


Opening and Closing Files

f = open('review.json')
for l in f:

if 'horrible' in l:
print(l)

f.close()

f = open('review.json')
lines = f.readlines()
for l in lines:

if 'horrible' in l: 
print(l) 

f.close()

with open('review.json') as f:
for l in f:

if 'horrible' in l:
print(l)

lines = open('review.json').readlines()
for l in lines :

if 'horrible' in l: 
print(l) 

Which methods 
are memory-
efficient?

Answer: the ones on the right 
are more memory-efficient. 

Left two boxes create lines object 
which holds the entirety of the .json 
file in memory! 



Processing Big Files

• How much memory did we use for process_reviews.py?

This script is NOT 
memory efficient.

df holds the entire json 
file's content as DF, in 
memory. 

wtoks is another big data 
object created from the 
entire text. 

Processing 4-million 
Yelp reviews took 6.5 
minutes and 33.5 GB of 
memory. 



Handling Files in Chunks
• We can store the data in chunks so that we only have access to what 

we need at a given point in time

• https://realpython.com/introduction-to-python-generators/

Reading in the files 
as a generator takes 
up zero space.

Then we simply 
iterate through 
the smaller dfs.

Read_json() 
argument says that 
each chunk will be 
10k lines.

This is memory efficient! 
Processing the same 
4million Yelp reviews 
took only 12.35GB of 
RAM. 

https://realpython.com/introduction-to-python-generators/


Pandas vs. Large Data Tips

• “Why and How to Use Pandas with Large (but not big) Data”
• https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-

data-9594dda2ea4c

• Use generators to access files in chunks

• Filter out unimportant columns to make your DataFrame smaller

• Use optimal data types
• Float64 is bigger than float32, but we might only need float32

https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-9594dda2ea4c


Data Types and Optimization

1. List Comprehend through alice words list against enable words list.

2. Same, but filter against enable words as a set.

3. Compute set difference.

x

x

x



Data Types and Optimization

1. List Comprehend through alice words list against enable words list.

2. Same, but filter against enable words as a set.

3. Compute set difference.

Ew

A bit 
faster

Best 
option

List objects are 
not optimized for 
membership 
operations, but 
sets are!



Algorithmic Efficiency: Summary

• Solutions can be implemented with varying degrees of efficiency

• Certain problems have inherent limits to efficiency
• Big O represents the upper bound to a problem as it relates to processing time and the input 

size
• Example: Sorting algorithms can only be as fast as O(n log n) in the worst case

• There are some sorting algorithms that are faster, but they only work with special input types

• Take Away
• Use the most efficient algorithm possible

• ”efficient” can be in terms of time or space complexity
• Weigh your options and choose what’s best for your situation

• Understand the relationship between the growth function and the input size
• O(n) is rather scalable, but O(n2) is too inefficient for large inputs

• More efficient algorithms = better memory usage and faster runtimes
• Efficiency is not always the be-all and end-all

• With smaller data sets, maybe readability is more important


