
Lecture 14: Computational Efficiency,

OnDemand on CRC

LING 1340/2340: Data Science for Linguists

Na-Rae Han

Objectives

 Big data considerations

 Computational efficiency

 Memory vs. processing time

 Algorithmic complexity

 Big O notation

 OnDemand platform & JNB at CRC (GUI!)

 Clustering, topic modelling

4/3/2022 2

The Yelp Dataset Challenge

4/3/2022 3

 https://www.yelp.com/dataset/challenge

https://www.yelp.com/dataset/challenge

Working with big data files

4/3/2022 4

 Each file is in JSON format, and they are huge:

 review.json is 5.0GB with 6.7 million records

 user.json is 2.4GB with 1.6 million records

 Too big to open in most text editors (Notepad++ couldn't.)

 How to explore them?
In command line. head/tail, grep and regular expression-based searching.

Command line exploration

4/3/2022 5

Opening + processing big files

4/3/2022 6

 How much resource does it take to process review.json file (5.0GB)?

There's 5 GB

Another 4~ GB

Not as big
After exceeding the

8GB default
memory allocation,
the job gets killed.

This code is NOT
memory-efficient.

Memory consideration

4/3/2022 7

 How much space needed for bigrams? Trigrams?

Good news! These
are built as

generator objects
and take up almost

zero space.

But these
frequency

counter objects
will take up

space.

4/3/2022 8

Generator type
objects take up
little memory

space; meant to
be used in a loop-
like environment.

Content has been
exhausted

Casting as list.
If you store the returned

list, it will take up
memory space.

File opening & closing methods

4/3/2022 9

f = open('review.json')
for l in f:

if 'horrible' in l:
print(l)

f.close()

f = open('review.json')
lines = f.readlines()
for l in lines:

if 'horrible' in l:
print(l)

f.close()

with open('review.json') as f:
for l in f:

if 'horrible' in l:
print(l)

No need to close f later.
Some folks swear by

using with.

Which methods
are memory-

efficient?

lines = open('review.json').readlines()
for l in lines :

if 'horrible' in l:
print(l) Python will

close up this
file handle.

Handling files in chunks

4/3/2022 10

f = open('review.json')
lines1 = f.readlines(1000000000)
lines2 = f.readlines(1000000000)
lines3 = f.readlines(1000000000)
lines4 = f.readlines(1000000000)
lines5 = f.readlines()
f.close()

dfs = pd.read_json('review.json', lines=True, chunksize=10000, encoding='utf8')

wfreq = Counter()

for df in dfs:
wtoks = ' '.join(df['text']).split()
temp = Counter(wtoks)
wfreq.update(temp)

print(wfreq.most_common(20))

Optional # of bytes to read.
(When used like this without a

loop, offers no memory
advantage.)

then, iterate
through each

small df.

chunksize optional
parameter in pandas'

read_json method reads in
10,000 lines at a time…

Memory-efficient!
This code uses only

290MB of memory!!

Generator
object. Takes

up zero space.

Pandas vs. large data: tips

4/3/2022 11

 "Why and How to Use Pandas with Large (but not big) Data"

 https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-
9594dda2ea4c

1. Read CSV file data in chunk size

2. Filter out unimportant columns in DF to save memory

3. Change dtypes for columns

 float64 takes up more space than float32.

https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-9594dda2ea4c

Vectorizing and training in chunks

4/3/2022 12

from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import HashingVectorizer
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

filename = 'review_10k.json'
length = 10000
chunk_size = 1000
chunks = length/chunk_size

df_chunks = pd.read_json(filename, lines=True, chunksize=chunk_size, encoding="utf-8")

clf = MultinomialNB()
vectorizer = HashingVectorizer(alternate_sign=False)

for i, df in enumerate(df_chunks):
if i < 0.8 * chunks:

clf.partial_fit(vectorizer.transform(df['text']), df['stars'], classes=[1,2,3,4,5])
else:

pred = clf.predict(vectorizer.transform(df['text']))
print('batch {}, {} accuracy'.format(i, np.mean(pred == df['stars'])))

If vectorizer/ML model
depends only on individual

row of data, it can be
implemented in chunks.

(Caveat: TF-IDF vectorizer and
most ML models can't.)

Hashing vectorizer
skips the IDF part of TF/IDF,

can be implemented in chunks!

NB classifier can be
trained in partial bits!

Computational efficiency: space vs. time

SPACE: memory footprint TIME: processor runtime

4/3/2022 13

 Do not create duplicate data objects.

 Avoid creating a data object that does
not need to be stored in its entirety.

 In code, delete large data objects that
will no longer be used

▪ Do not simply rely on Python's garbage
collection

 Avoid duplicating an expensive
processing step: process once, store
result as an object, then reuse.

 Use an efficient algorithm.

 Use the data type optimal for the task
at hand.

Trade-off relationship sometimes:
manage available computational resources,

achieve balance & goal!

Optimize both.

Data types and optimization

4/3/2022 14

Task: find Alice
words that are not
found in enable list

"Alice in Wonderland",
34K tokens

"Enable" word list,
173K total words

4/3/2022 15

 Try 1: list-comprehend through awords (list), filter against enable (list)

 Try 2: same, but filter against enable list as a SET

 Try 3: compute the SET difference

4/3/2022 16

 Try 1: list-comprehend through awords (list), filter against enable (list)

 Try 2: same, but filter against enable list as a SET

 Try 3: compute the SET difference

List as a data type is
NOT optimized for

membership
operations…

but set is!
much
faster

blazing
fast

Keep efficiency in
mind, pick right
combination of
data structure
and operation

Algorithmic complexity and the Big O

4/3/2022 17

 https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

 We have a list of n items. Imagine n is 100, 1000 or even 1 million.

1. Is the first element an even number?

 Can be implemented in O(1): an algorithm that executes in a constant time regardless of
the size of the input dataset.

2. Does the list contain value 42?

 Can be implemented in O(n): an algorithm whose performance will grow linearly in
proportion to the size of the input data.

3. Does the list contain duplicate values?

 Can be implemented in O(n2):an algorithm whose performance is directly proportional to
the square of the size of the input data set (quadratic).

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

Algorithmic complexity and the Big O

4/3/2022 18

 https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

 We have a list of n items. Imagine n is 100, 1000 or even 1 million.

4. Sort the list (ascending or descending)

 Can be implemented in O(n log n): an
algorithm that executes in loglinear time.

 See: https://brilliant.org/wiki/sorting-
algorithms/

http://bigocheatsheet.com/

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://brilliant.org/wiki/sorting-algorithms/
http://bigocheatsheet.com/

Algorithmic efficiency: summary

4/3/2022 19

 A problem can be implemented with varying degrees of algorithmic efficiency.

 A problem comes with its own inherent algorithmic complexity limit.

 Big O notation is a mathematical notation that encapsulates the relationship between the
processing time and the input data size.

 Example: the most efficient known sorting algorithm bottoms out at O(n log n).

 In a nutshell…

 Compose the most efficient algorithm that you can.

 Understand the relationship between the data size growth and the processing time
growth. O(n) has fair scalability, O(n2) becomes intractable.

 Efficiency of an algorithm can lead to dramatic runtime difference when dealing with big
data.

OnDemand on CRC!

4/3/2022 20

 Browser-based gateway to CRC
resources!

 https://ondemand.htc.crc.pitt.edu/

 Jupyter Notebook (Lab)
etc. are available!

 Help documentation is somewhat
buried:

 https://crc.pitt.edu/resources/htc-
cluster/open-ondemand

https://ondemand.htc.crc.pitt.edu/
https://crc.pitt.edu/resources/htc-cluster/open-ondemand

Launching a session

4/3/2022 21

 Python version: module load python/ondemand-jupyter-python3.8

 Account: ling2340_2022s

4/3/2022 22

Wrap up

4/3/2022 23

 Homework #4 out – don’t be too ambitious!

 Progress report #3, presentation up coming!

