
Lecture 17: Computational Efficiency,

OnDemand on CRC

LING 1340/2340: Data Science for Linguists

Na-Rae Han

Objectives

 Big data considerations

 Explore on command line

 Making Python code more efficient

 OnDemand platform & JNB at CRC (GUI!)

 Clustering, topic modelling

3/29/2023 2

The Yelp Dataset Challenge

3/29/2023 3

 https://www.yelp.com/dataset

https://www.yelp.com/dataset

Working with big data files

3/29/2023 4

 Each file is in JSON format, and they are huge:

 review.json is 5.0GB with 7 million records

 user.json is 3.2GB with 2 million records

 Too big to open in most text editors (Notepad++ couldn't.)

 How to explore them?
In command line. head/tail, grep and regular expression-based searching.

Command line exploration: 5-star reviews?

3/29/2023 5

Grepping 5-star
reviews

Command line exploration: 'yummy' vs. 'horrible'

3/29/2023 6

Change of venue!
Let's work with the 1mil

sampled reviews. Big enough,
more manageable.

How many of 1 million
reviews mention

'yummy'? How about
'horrible'?

A quick look at "Stars" distribution

3/29/2023 7

Cut the 4th field with "," as
the delimiter, then look at

the first 10.

… then sort the
lines…

… then collapse adjacent
identical lines with a count!

Which "Stars" most common? With 'horrible'?

3/29/2023 8

Now try the whole 1million reviews.
1-star reviews are 3rd most common!

What if "horrible" is mentioned?

"horrible" and… 5 stars??

Opening + processing big files

3/29/2023 9

 How much resource does it take to process review.json file (5.0GB)?

There's 5 GB

Another 4~ GB

Not as big

Exceeds the 4GB default
memory allocation on CRC.

This code is NOT
memory-efficient.

When run on your own
laptop, script will likely

crash citing "MemoryError"

Big objects: avoid creating, manually delete

3/29/2023 10

 Try avoiding making big data objects in the first place.

 Manually free up memory by deleting objects when done using. (Advanced users only!)

Rather than creating wtoks AND wfreq, you could:
wfreq = Counter(' '.join(df['text']).split())

If you no longer need df, delete it:
del df

gc.collect()

Garbage collection:
Python takes care of

some memory
management on its own.

Memory consideration

3/29/2023 11

 How much space needed for bigrams? Trigrams?

Good news! These
are built as

generator objects
and take up almost

zero space.

But these
frequency

counter objects
will take up

space.

3/29/2023 12

Generator type
objects take up
little memory

space; meant to
be used in a loop-
like environment.

Content has been
exhausted

Casting as list.
If you store the returned

list, it will take up
memory space.

File opening & closing methods

3/29/2023 13

f = open('review.json')
for l in f:

if 'horrible' in l:
print(l)

f.close()

f = open('review.json')
lines = f.readlines()
for l in lines:

if 'horrible' in l:
print(l)

f.close()

with open('review.json') as f:
for l in f:

if 'horrible' in l:
print(l)

No need to close f later.
Some folks swear by

using with.

Which methods
are memory-

efficient?

lines = open('review.json').readlines()
for l in lines :

if 'horrible' in l:
print(l) Python will

close up this
file handle.

Handling files in chunks

3/29/2023 14

f = open('review.json')
lines1 = f.readlines(1000000000)
lines2 = f.readlines(1000000000)
lines3 = f.readlines(1000000000)
lines4 = f.readlines(1000000000)
lines5 = f.readlines()
f.close()

dfs = pd.read_json('review.json', lines=True, chunksize=10000, encoding='utf8')

wfreq = Counter()

for df in dfs:
wtoks = ' '.join(df['text']).split()
temp = Counter(wtoks)
wfreq.update(temp)

print(wfreq.most_common(20))

Optional # of bytes to read.
(When used like this without a

loop, offers no memory
advantage.)

then, iterate
through each

small df.

chunksize optional
parameter in pandas'

read_json method reads in
10,000 lines at a time…

Memory-efficient!
This code uses only

290MB of memory!!

Generator
object. Takes

up zero space.

Pandas vs. large data: tips

3/29/2023 15

 "Why and How to Use Pandas with Large (but not big) Data"

 https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-
9594dda2ea4c

1. Read CSV file data in chunk size

2. Filter out unimportant columns in DF to save memory

3. Change dtypes for columns

 float64 takes up more space than float32.

https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-9594dda2ea4c
https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-9594dda2ea4c

Vectorizing and training in chunks

3/29/2023 16

from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import HashingVectorizer
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

filename = 'review_10k.json'
length = 10000
chunk_size = 1000
chunks = length/chunk_size

df_chunks = pd.read_json(filename, lines=True, chunksize=chunk_size, encoding="utf-8")

clf = MultinomialNB()
vectorizer = HashingVectorizer(alternate_sign=False)

for i, df in enumerate(df_chunks):
if i < 0.8 * chunks:

clf.partial_fit(vectorizer.transform(df['text']), df['stars'], classes=[1,2,3,4,5])
else:

pred = clf.predict(vectorizer.transform(df['text']))
print('batch {}, {} accuracy'.format(i, np.mean(pred == df['stars'])))

If vectorizer/ML model
depends only on individual

row of data, it can be
implemented in chunks.

(Caveat: TF-IDF vectorizer and
most ML models can't.)

Hashing vectorizer
skips the IDF part of TF/IDF,

can be implemented in chunks!

NB classifier can be
trained in partial bits!

OnDemand on CRC!

3/29/2023 17

 Browser-based gateway to CRC
resources!

 https://ondemand.htc.crc.pitt.edu/

 Jupyter Notebook (Lab)
etc. are available!

 Help documentation is somewhat
buried:

 https://crc.pitt.edu/resources/htc-
cluster/open-ondemand

https://ondemand.htc.crc.pitt.edu/
https://crc.pitt.edu/resources/htc-cluster/open-ondemand
https://crc.pitt.edu/resources/htc-cluster/open-ondemand

Launching a session

3/29/2023 18

 Python version: module load python/ondemand-jupyter-python3.9

 Account: ling2340_2023s

3/29/2023 19

Wrap up

3/29/2023 20

 Homework #4 out – don’t be too ambitious!

 Progress report #3, presentation up coming!

	Slide 1: Lecture 17: Computational Efficiency, OnDemand on CRC
	Slide 2: Objectives
	Slide 3: The Yelp Dataset Challenge
	Slide 4: Working with big data files
	Slide 5: Command line exploration: 5-star reviews?
	Slide 6: Command line exploration: 'yummy' vs. 'horrible'
	Slide 7: A quick look at "Stars" distribution
	Slide 8: Which "Stars" most common? With 'horrible'?
	Slide 9: Opening + processing big files
	Slide 10: Big objects: avoid creating, manually delete
	Slide 11: Memory consideration
	Slide 12
	Slide 13: File opening & closing methods
	Slide 14: Handling files in chunks
	Slide 15: Pandas vs. large data: tips
	Slide 16: Vectorizing and training in chunks
	Slide 17: OnDemand on CRC!
	Slide 18: Launching a session
	Slide 19
	Slide 20: Wrap up

