
Lecture 17: Big Data Wrangling,

OnDemand on CRC

LING 1340/2340: Data Science for Linguists

Na-Rae Han

Objectives

 Big data considerations

 Explore on command line

 Making Python code more efficient

 OnDemand platform & JNB at CRC (GUI!)

 Clustering, topic modelling

3/29/2023 2

The Yelp Dataset Challenge

3/29/2023 3

 https://www.yelp.com/dataset

https://www.yelp.com/dataset

Working with big data files

3/29/2023 4

 Each file is in JSON format, and they are huge:

 review.json is 5.0GB with 7 million records

 user.json is 3.2GB with 2 million records

 Too big to open in most text editors (Notepad++ couldn't.)

 How to explore them?
In command line. head/tail, grep and regular expression-based searching.

Command line exploration: 5-star reviews?

3/29/2023 5

Grepping 5-star
reviews

Command line exploration: 'yummy' vs. 'horrible'

3/29/2023 6

Change of venue!
Let's work with the 1mil

sampled reviews. Big enough,
more manageable.

How many of 1 million
reviews mention

'yummy'? How about
'horrible'?

A quick look at "Stars" distribution

3/29/2023 7

Cut the 4th field with "," as
the delimiter, then look at

the first 10.

… then sort the
lines…

… then collapse adjacent
identical lines with a count!

Which "Stars" most common? With 'horrible'?

3/29/2023 8

Now try the whole 1million reviews.
1-star reviews are 3rd most common!

What if "horrible" is mentioned?

"horrible" and… 5 stars??

Opening + processing big files

3/29/2023 9

 How much resource does it take to process review.json file (5.0GB)?

There's 5 GB

Another 4~ GB

Not as big

Exceeds the 4GB default
memory allocation on CRC.

This code is NOT
memory-efficient.

When run on your own
laptop, script will likely

crash citing "MemoryError"

Big objects: avoid creating, manually delete

3/29/2023 10

 Try avoiding making big data objects in the first place.

 Manually free up memory by deleting objects when done using. (Advanced users only!)

Rather than creating wtoks AND wfreq, you could:
wfreq = Counter(' '.join(df['text']).split())

If you no longer need df, delete it:
del df

gc.collect()

Garbage collection:
Python takes care of

some memory
management on its own.

Memory consideration

3/29/2023 11

 How much space needed for bigrams? Trigrams?

Good news! These
are built as

generator objects
and take up almost

zero space.

But these
frequency

counter objects
will take up

space.

3/29/2023 12

Generator type
objects take up
little memory

space; meant to
be used in a loop-
like environment.

Content has been
exhausted

Casting as list.
If you store the returned

list, it will take up
memory space.

File opening & closing methods

3/29/2023 13

f = open('review.json')
for l in f:

if 'horrible' in l:
print(l)

f.close()

f = open('review.json')
lines = f.readlines()
for l in lines:

if 'horrible' in l:
print(l)

f.close()

with open('review.json') as f:
for l in f:

if 'horrible' in l:
print(l)

No need to close f later.
Some folks swear by

using with.

Which methods
are memory-

efficient?

lines = open('review.json').readlines()
for l in lines :

if 'horrible' in l:
print(l) Python will

close up this
file handle.

Handling files in chunks

3/29/2023 14

f = open('review.json')
lines1 = f.readlines(1000000000)
lines2 = f.readlines(1000000000)
lines3 = f.readlines(1000000000)
lines4 = f.readlines(1000000000)
lines5 = f.readlines()
f.close()

dfs = pd.read_json('review.json', lines=True, chunksize=10000, encoding='utf8')

wfreq = Counter()

for df in dfs:
wtoks = ' '.join(df['text']).split()
temp = Counter(wtoks)
wfreq.update(temp)

print(wfreq.most_common(20))

Optional # of bytes to read.
(When used like this without a

loop, offers no memory
advantage.)

then, iterate
through each

small df.

chunksize optional
parameter in pandas'

read_json method reads in
10,000 lines at a time…

Memory-efficient!
This code uses only

290MB of memory!!

Generator
object. Takes

up zero space.

Pandas vs. large data: tips

3/29/2023 15

 "Why and How to Use Pandas with Large (but not big) Data"

 https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-
9594dda2ea4c

1. Read CSV file data in chunk size

2. Filter out unimportant columns in DF to save memory

3. Change dtypes for columns

 float64 takes up more space than float32.

https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-9594dda2ea4c
https://towardsdatascience.com/why-and-how-to-use-pandas-with-large-data-9594dda2ea4c

Vectorizing and training in chunks

3/29/2023 16

from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import HashingVectorizer
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

filename = 'review_10k.json'
length = 10000
chunk_size = 1000
chunks = length/chunk_size

df_chunks = pd.read_json(filename, lines=True, chunksize=chunk_size, encoding="utf-8")

clf = MultinomialNB()
vectorizer = HashingVectorizer(alternate_sign=False)

for i, df in enumerate(df_chunks):
if i < 0.8 * chunks:

clf.partial_fit(vectorizer.transform(df['text']), df['stars'], classes=[1,2,3,4,5])
else:

pred = clf.predict(vectorizer.transform(df['text']))
print('batch {}, {} accuracy'.format(i, np.mean(pred == df['stars'])))

If vectorizer/ML model
depends only on individual

row of data, it can be
implemented in chunks.

(Caveat: TF-IDF vectorizer and
most ML models can't.)

Hashing vectorizer
skips the IDF part of TF/IDF,

can be implemented in chunks!

NB classifier can be
trained in partial bits!

OnDemand on CRC!

3/29/2023 17

 Browser-based gateway to CRC
resources!

 https://ondemand.htc.crc.pitt.edu/

 Jupyter Notebook (Lab)
etc. are available!

 Help documentation is somewhat
buried:

 https://crc.pitt.edu/resources/htc-
cluster/open-ondemand

https://ondemand.htc.crc.pitt.edu/
https://crc.pitt.edu/resources/htc-cluster/open-ondemand
https://crc.pitt.edu/resources/htc-cluster/open-ondemand

Launching a session

3/29/2023 18

 Python version: module load python/ondemand-jupyter-python3.9

 Account: ling2340_2023s

3/29/2023 19

Wrap up

3/29/2023 20

 Homework #4 out – don’t be too ambitious!

 Progress report #3, presentation up coming!

	Slide 1: Lecture 17: Big Data Wrangling, OnDemand on CRC
	Slide 2: Objectives
	Slide 3: The Yelp Dataset Challenge
	Slide 4: Working with big data files
	Slide 5: Command line exploration: 5-star reviews?
	Slide 6: Command line exploration: 'yummy' vs. 'horrible'
	Slide 7: A quick look at "Stars" distribution
	Slide 8: Which "Stars" most common? With 'horrible'?
	Slide 9: Opening + processing big files
	Slide 10: Big objects: avoid creating, manually delete
	Slide 11: Memory consideration
	Slide 12
	Slide 13: File opening & closing methods
	Slide 14: Handling files in chunks
	Slide 15: Pandas vs. large data: tips
	Slide 16: Vectorizing and training in chunks
	Slide 17: OnDemand on CRC!
	Slide 18: Launching a session
	Slide 19
	Slide 20: Wrap up

