Lecture 10: Web Mining, Annotation

LING 1340/2340: Data Science for Linguists Na-Rae Han

Objectives

Web and social media mining

- Web pages: HTML basics
- Twitter mining revisited
- Linguistic annotation
 - TimeML

Homework 2 pitfalls

- 1. Obtaining averages from flattened groups \rightarrow
 - We did this back in LING 1330...
- 2. Producing per-essay measurements, but results are saved as a *separate series*, not inserted into essay_df.
 - Problem? The values become detached from their original essays: you can no longer connect them to additional attributes (L1, Prompt, token count...)
 - You should build out essay_df with per-essay measurements, and use it as your exploration base. Use .groupby() and filters to zone in on particular attributes and further narrow down... on the fly!
- 3. Only ever looking at three average numbers (for low, medium, high) in drawing conclusions. (And ANOVA.)
 - Remedy? Look at overall DISTRIBUTION.
 - Use .describe(), boxplots.
- 4. For-loops for processing each row, "+= 1".
 - This is NOT the pandas way!
- 5. Inefficiency. Don't tokenize 5 times!

We must adapt to the new **pandas way**, which at long last allows us a proper statistics treatment.

Per-sample measurements are the ground truth! You then closely examine their **distribution**.

	Total token #	Total sentence #	Avg sentence length	
Low	300172	13349	22.48	
Medium	2206853	94177	23.43	
high	1678805	71067	23.62	

Web mining

- Involves "web crawling" "web spyder", ...
- scrapy is the most popular library.
 - https://scrapy.org/

 \leftarrow You will have to install it first.

- You have collected a set of web pages. Now what?
 - A web page typically has tons of non-text, extraneous data such as headers, scripts, etc.
 - Example: <u>https://naraehan.github.io/Data-Science-for-Linguists-2024/todo</u>
 - You will need to parse each page to extract textual data.
 - Beautiful Soup (bs4) is capable of parsing XML and HTML files.
- OK, so you've processed the web pages as data. Now what?
 - Linguistic analysis?

Processing a static Twitter corpus

"Twitter Samples" corpus can be downloaded from <u>http://www.nltk.org/nltk_data/</u>

```
In [3]: # One json object per line
    jfile = 'D:/Corpora/twitter_samples/positive_tweets.json'
    jlines = open(jfile).readlines()
    jlines[0]
```

Out[3]: '{"contributors": null, "coordinates": null, "text": "#FollowFriday @France_Int e @PKuchly57 @Milipol_Paris for being top engaged members in my community this week :)", "user": {"time_zone": "Paris", "profile_background_image_url": "htt

```
In [5]: # using json library to read line.
import json
json.loads(jlines[0])
```

```
Out[5]: {'contributors': None,
    'coordinates': None,
    'created_at': 'Fri Jul 24 08:23:36 +0000 2015',
    'entities': {'hashtags': [{'indices': [0, 13], 'text': 'FollowFriday'}],
    'symbols': [],
    'urls': [],
    'urls': [],
    'user_mentions': [{'id': 3222273608,
        'id_str': '3222273608',
        'indices': [14, 26],
        'name': 'France International'.
```

Mining social media for swear words

- https://stronglang.wordpress.com/2015/07/28/mapping-theunited-swears-of-america/
 - Jack Grieve mined Twitter and mapped prominent swear words by geographic regions within the US

Linguistic annotation: representing meaning

TimeML

- Abstract Meaning Representation (AMR)
 - https://amr.isi.edu/index.html
- What semantic theories and concepts does it use?

TimeML

- Markup Language for Temporal and Event Expressions
 - https://timeml.github.io/site/index.html
 - http://xml.coverpages.org/timeML.html
- Influenced by Reichenbach's theory of tense (1947)
 - Distinguishes: speech time, event time, and reference time
 - https://plato.stanford.edu/entries/tense-aspect/
- Published corpora ("Timebank"):
 - https://timeml.github.io/site/timebank/documentation-1.2.html
 - TimeBank 1.2 (released by Linguistic Data Consortium):
 - https://catalog.ldc.upenn.edu/LDC2006T08

TimeML exercise

The following simple sentence, uttered on October 20, 2009, encodes events that occurred on a time axis.

Mia visited Seoul to look me up yesterday.

As a linguist, determine what pieces of <u>semantic information</u> are present, and think about how you will <u>formally represent</u> them.

Annotating event/time relation: TimeML

<maf maf"="" www.iso.org="" xmlns:"http:=""> <seg type="token" xml:id="token1">Mia</seg> <seg type="token" xml:id="token2">visited</seg> <seg type="token" xml:id="token3">Seoul</seg> <seg type="token" xml:id="token4">to</seg></maf>	Word toke	ens: ntation	
<seg type="token" xml:id="token5">look</seg> <seg type="token" xml:id="token6">me</seg> <seg type="token" xml:id="token7">up</seg> <seg type="token" xml:id="token8">yesterday</seg> <pc>.</pc> 			
<isotimeml isotimeml"="" www.iso.org.="" xmlns:"http:=""> <timex3 <="" td="" type="DATE" value="2009-10-20" xml:id="t0"><td>vent Annotation: -off annotation</td></timex3></isotimeml>			vent Annotation: -off annotation
<pre>functionInDocument="CREATION_TIME"/> <event c="" class="OC <EVENT xml:id=" e2"="" target="#token5 #token7" tense="NONE" vform="INFINITIVE" xml:id="e1"></event> <timex3 #e1"="" <="" <tlink="" eventid="#e2" pre="" relatedtotime="#t1" relt="" type="DATE" value="2009- <TLINK eventID=" xml:id="t1"></timex3></pre>	CCURRENCE" tense= class="OCCURRENCE 10-19"/> ype="BEFORE"/> ype="ON_OR_BEFO ype="IS_INCLUDED"	"PAST"/> "" RE"/> />	

Knowledge representation

Human-curated systems for meanings and concepts:

- Computerized & hierarchically organized lexicons
 - WordNet, Proposition Bank
- Ontology, taxonomy
 - Computerized conceptual hierarchies
 - Industry applications are often based on domain-specific ontologies/taxonomies

Wrapping up

Next class

- To-do #10: Try out AMR
- More annotation
- Your project
 - Progress Report #1 specs published
 - Work on it! Focus on DATA.