
Lecture 18: Computational Efficiency, 

OnDemand on CRC

LING 1340/2340: Data Science for Linguists

Na-Rae Han



Objectives

 OnDemand platform & JNB at CRC (GUI!)

 Computational efficiency

 Memory vs. processing time

 Algorithmic complexity

 Big O notation

3/29/2024 2



OnDemand on CRC! 

3/29/2024 3

 Browser-based gateway to CRC 
resources! 

 https://ondemand.htc.crc.pitt.edu/

 Jupyter Notebook (Lab) 
etc. are available

 Help documentation:

 https://crc-pages.pitt.edu/user-
manual/web-portals/open-ondemand/ 

https://ondemand.htc.crc.pitt.edu/
https://crc-pages.pitt.edu/user-manual/web-portals/open-ondemand/
https://crc-pages.pitt.edu/user-manual/web-portals/open-ondemand/


Launching a session

3/29/2024 4

 Python version: 
module load python/ondemand-jupyter-python3.11 

 Account: ling1340_2024s

 Memory (GB) (optional)

 You may need to specify RAM amount

 Default: 8GB per core. 
Your session will terminate if exceeded! 



3/29/2024 5



Computational efficiency: space vs. time

SPACE: memory footprint TIME: processor runtime

3/29/2024 6

 Do not create duplicate data 
objects. 

 Avoid creating a data object 
that does not need to be stored 
in its entirety.

 Avoid creating interim, single-
use data objects. 

 Avoid duplicating an expensive 
processing step: process once, 
store result as an object, then 
reuse.

 Use an efficient algorithm.

 Use the data type optimal for 
the task at hand.   

Trade-off relationship! 
Manage available computational resources, 

achieve balance & goal! 

Optimize both.



Data types and optimization

3/29/2024 7

Task: find Alice 
words that are not 
found in enable list

"Alice in Wonderland", 
34K tokens

"Enable" word list, 
173K total words 



3/29/2024 8

 Try 1: list-comprehend through awords (list), filter against enable (list)

 Try 2: same, but filter against enable list as a SET

 Try 3: both as SETS, compute the set difference



3/29/2024 9

 Try 1: list-comprehend through awords (list), filter against enable (list)

 Try 2: same, but filter against enable list as a SET

 Try 3: both as SETS, compute the set difference

List as a data type is 
NOT optimized for 

membership 
operations… 

but set is! 
much 
faster

blazing 
fast

Keep efficiency in 
mind, pick right 
combination of  
data structure 
and operation



Algorithmic complexity and the Big O

3/29/2024 10

 https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

 We have a list of n items. Imagine n is 100, 1000 or even 1 million. 

1. Is the first element an even number? 

 Can be implemented in O(1): an algorithm that executes in a constant time 
regardless of the size of the input dataset. 

2. Does the list contain value 42?

 Can be implemented in O(n): an algorithm whose performance will grow 
linearly in proportion to the size of the input data. 

3. Does the list contain duplicate values?

 Can be implemented in O(n2): an algorithm whose performance is directly 
proportional to the square of the size of the input data set (quadratic).

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/


Algorithmic complexity and the Big O

3/29/2024 11

 https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

 We have a list of n items. Imagine n is 100, 1000 or even 1 million. 

4. Sort the list (ascending or descending)

 Can be implemented in O(n log n): 
an algorithm that executes in 
loglinear time. 

 See: 
https://brilliant.org/wiki/sorting-
algorithms/

http://bigocheatsheet.com/

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://brilliant.org/wiki/sorting-algorithms/
https://brilliant.org/wiki/sorting-algorithms/
http://bigocheatsheet.com/


Algorithmic complexity and the Big O

3/29/2024 12

 https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

 We have a list of n items. Imagine n is 100, 1000 or even 1 million. 

 O(1) Constant time
 O(log n) Log(arithmic) time
 O(n) Linear time
 O(n log n) Log linear time
 O(n2) Quadratic time
 O(n3) Cubic time
 O(nk) Polynomial time
 O(2n) Exponential time

http://bigocheatsheet.com/

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
http://bigocheatsheet.com/


Algorithmic efficiency: summary

3/29/2024 13

 A problem can be implemented with varying degrees of algorithmic 
efficiency. 

 A problem comes with its own inherent algorithmic complexity limit.

 Big O notation is a mathematical notation that encapsulates the relationship 
between the processing time and the input data size.

 Example: the most efficient known sorting algorithm bottoms out at O(n log n). 

 In a nutshell…

 Compose the most efficient algorithm that you can.

 Understand the relationship between the data size growth and the processing time 
growth. O(n) has fair scalability, O(n2) becomes intractable. 

 Efficiency of an algorithm can lead to dramatic runtime difference when dealing 
with big data. 



Wrap up

3/29/2024 14

 Homework #4 out – don’t be too ambitious! 

 Progress report #3, presentation up coming! 


	Slide 1: Lecture 18: Computational Efficiency,  OnDemand on CRC
	Slide 2: Objectives
	Slide 3: OnDemand on CRC! 
	Slide 4: Launching a session
	Slide 5
	Slide 6: Computational efficiency: space vs. time
	Slide 7: Data types and optimization
	Slide 8
	Slide 9
	Slide 10: Algorithmic complexity and the Big O
	Slide 11: Algorithmic complexity and the Big O
	Slide 12: Algorithmic complexity and the Big O
	Slide 13: Algorithmic efficiency: summary
	Slide 14: Wrap up

